Copied to
clipboard

G = C2413D4order 128 = 27

1st semidirect product of C24 and D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2413D4, C25.89C22, C24.118C23, C23.747C24, C43C22≀C2, (C24×C4)⋊7C2, (C22×C4)⋊54D4, C223(C4⋊D4), C23.629(C2×D4), (C22×D4)⋊16C22, C23.247(C4○D4), (C22×C4).257C23, (C23×C4).681C22, C23.7Q8115C2, C22.457(C22×D4), C23.23D4111C2, C2.C4245C22, C2.90(C22.19C24), (C2×C4⋊D4)⋊41C2, (C2×C4⋊C4)⋊40C22, C2.46(C2×C4⋊D4), (C2×C22≀C2)⋊18C2, C2.30(C2×C22≀C2), (C2×C4).1202(C2×D4), (C2×C22⋊C4)⋊34C22, C22.588(C2×C4○D4), SmallGroup(128,1579)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2413D4
C1C2C22C23C24C25C24×C4 — C2413D4
C1C23 — C2413D4
C1C23 — C2413D4
C1C23 — C2413D4

Generators and relations for C2413D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, faf=ac=ca, ad=da, ae=ea, bc=cb, fbf=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1188 in 612 conjugacy classes, 144 normal (9 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C23×C4, C23×C4, C22×D4, C22×D4, C25, C23.7Q8, C23.23D4, C2×C22≀C2, C2×C4⋊D4, C24×C4, C2413D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C4⋊D4, C22×D4, C2×C4○D4, C2×C22≀C2, C2×C4⋊D4, C22.19C24, C2413D4

Smallest permutation representation of C2413D4
On 32 points
Generators in S32
(1 17)(2 18)(3 19)(4 20)(5 11)(6 12)(7 9)(8 10)(13 32)(14 29)(15 30)(16 31)(21 25)(22 26)(23 27)(24 28)
(1 25)(2 26)(3 27)(4 28)(5 32)(6 29)(7 30)(8 31)(9 15)(10 16)(11 13)(12 14)(17 21)(18 22)(19 23)(20 24)
(1 25)(2 26)(3 27)(4 28)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 21)(18 22)(19 23)(20 24)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 30)(14 31)(15 32)(16 29)(17 27)(18 28)(19 25)(20 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 10)(3 9)(4 12)(5 21)(6 24)(7 23)(8 22)(13 19)(14 18)(15 17)(16 20)(25 30)(26 29)(27 32)(28 31)

G:=sub<Sym(32)| (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,9)(8,10)(13,32)(14,29)(15,30)(16,31)(21,25)(22,26)(23,27)(24,28), (1,25)(2,26)(3,27)(4,28)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,21)(18,22)(19,23)(20,24), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,19)(14,18)(15,17)(16,20)(25,30)(26,29)(27,32)(28,31)>;

G:=Group( (1,17)(2,18)(3,19)(4,20)(5,11)(6,12)(7,9)(8,10)(13,32)(14,29)(15,30)(16,31)(21,25)(22,26)(23,27)(24,28), (1,25)(2,26)(3,27)(4,28)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,21)(18,22)(19,23)(20,24), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,27)(18,28)(19,25)(20,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,19)(14,18)(15,17)(16,20)(25,30)(26,29)(27,32)(28,31) );

G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,11),(6,12),(7,9),(8,10),(13,32),(14,29),(15,30),(16,31),(21,25),(22,26),(23,27),(24,28)], [(1,25),(2,26),(3,27),(4,28),(5,32),(6,29),(7,30),(8,31),(9,15),(10,16),(11,13),(12,14),(17,21),(18,22),(19,23),(20,24)], [(1,25),(2,26),(3,27),(4,28),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,21),(18,22),(19,23),(20,24)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,30),(14,31),(15,32),(16,29),(17,27),(18,28),(19,25),(20,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,10),(3,9),(4,12),(5,21),(6,24),(7,23),(8,22),(13,19),(14,18),(15,17),(16,20),(25,30),(26,29),(27,32),(28,31)]])

44 conjugacy classes

class 1 2A···2G2H···2S2T2U4A···4P4Q···4V
order12···22···2224···44···4
size11···12···2882···28···8

44 irreducible representations

dim111111222
type++++++++
imageC1C2C2C2C2C2D4D4C4○D4
kernelC2413D4C23.7Q8C23.23D4C2×C22≀C2C2×C4⋊D4C24×C4C22×C4C24C23
# reps13623112412

Matrix representation of C2413D4 in GL6(𝔽5)

100000
040000
004000
000400
000040
000001
,
400000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
003000
000200
000010
000001
,
010000
100000
000200
003000
000001
000010

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2413D4 in GAP, Magma, Sage, TeX

C_2^4\rtimes_{13}D_4
% in TeX

G:=Group("C2^4:13D4");
// GroupNames label

G:=SmallGroup(128,1579);
// by ID

G=gap.SmallGroup(128,1579);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,120,758,2019]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,f*b*f=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽